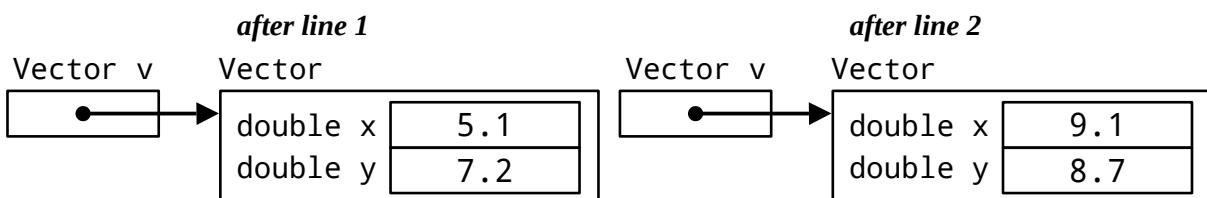


Worksheet: Simple Vector Class

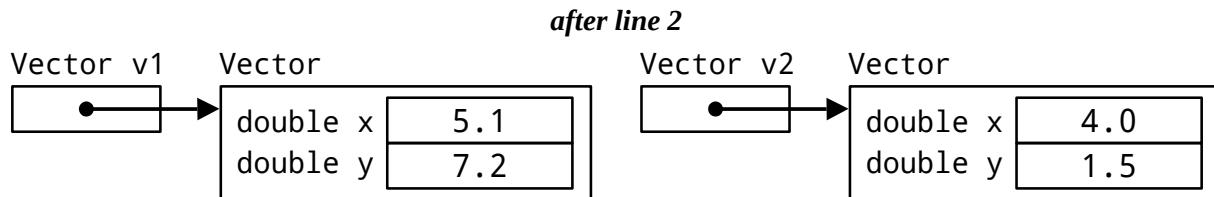

Follow the steps to design a final two-dimensional **Vector** class.

a) Write a class named **Vector** that contains only two fields, named **x** and **y**, both of type **double**.

b) Write a **constructor** for the above **Vector** class that takes two parameters of type **double** that are used to initialize the fields of the class. Do not include class information.

c) Examine the code segment and diagrammatic representation of memory structures, below:

```
1 Vector v = new Vector(5.1, 7.5);
2 v.add(4.0, 1.5);
```



In the space below, write the **method** named **add** for the class **Vector**. It is to operate on a **Vector** object, not return any value, and take two parameters, **x** and **y**, both of type **double**. The method is to add the parameter values to the respective fields of the current object, with result as shown in the diagrams above.

Worksheet: Simple Vector Class

d) Examine the code segment and diagrammatic representation of memory structures, below:

```
1 Vector v1 = new Vector(5.1, 7.5);
2 Vector v2 = new Vector(4.0, 1.5);
3 v1.add(v2);
```


Write another **method** named `add` for the above `Vector` class (overload the `add` method). This method is to return no value, and take a single parameter, `v`, of type `Vector`. It is to add the fields of the `v` object to the respective fields of the current object, with results as shown in the diagrams above.

e) Write a **method** named `equals` for the above `Vector` class. This method is to take a single parameter, `v`, of type `Vector`. It is to return `true` if both the `x` and `y` fields of the parameter object, `v`, are equal to the `x` and `y` fields, respectively, of the current object.